Mjolsness named American Association for the Advancement of Science fellow

Standard

Center member and Professor of Computer Science Eric Mjolsness has been been made a fellow of the American Association for the Advancement of Science for his distinguished contributions to the fields of computer science and biology, particularly for new computational models of gene regulation (networks of genes that turn each other on, off or partly on) and resulting technologies. For more details, see here.

Fall 2014

Standard

Oct 6
Bren Hall 4011
1 pm
James Supancic
Graduate Student
Department of Computer Science
UC Irvine

Self-paced learning for long-term tracking

We address the problem of long-term object tracking, where the object may become occluded or leave-the-view. In this setting, we show that an accurate appearance model is considerably more effective than a strong motion model. We develop simple but effective algorithms that alternate between tracking and learning a good appearance model given a track. We show that it is crucial to learn from the “right” frames, and use the formalism of self-paced curriculum learning to automatically select such frames. We leverage techniques from object detection for learning accurate appearance-based templates, demonstrating the importance of using a large negative training set (typically not used for tracking). We describe both an offline algorithm (that processes frames in batch) and a linear-time online (i.e. causal) algorithm that approaches real-time performance. Our models significantly outperform prior art, reducing the average error on benchmark videos by a factor of 4.

Efficient Matching of 3D Hand Exemplars in RGB-D Images

We focus on the task of single-image hand detection and pose estimation from RGB-D images. While much past work focuses on estimation from temporal video sequences, we consider the problem of single-image pose estimation, necessary for (re) initialization. The high number of degrees-of-freedom, frequent self-occlusions, and pose ambiguities make this problem rather challenging. While previous approaches tend to rely on articulated hand models or local part classifiers, our models are based on discriminative pose exemplars that can be quickly indexed with parts. We propose novel metric depth features that make the search over exemplars accurate and fast. Importantly, our exemplar models can reason about depth-aware occlusion. Finally, we also provide an extensive evaluation of the state-of-the-art, including academic and commercial systems, on a real-world annotated dataset. We show that our model outperforms such methods, providing promising results even in the presence of occlusions.

Oct 13
Bren Hall 4011
1 pm
Pranjal Awasthi
PostDoc Fellow
Department of Computer Science
Princeton University

Probabilistic modeling of ranking data is an extensively studied problem with applications ranging from understanding user preferences in electoral systems and social choice theory, to more modern learning tasks in online web search, crowd-sourcing and recommendation systems. This work concerns learning the Mallows model — one of the most popular probabilistic models for analyzing ranking data. In this model, the user’s preference ranking is generated as a noisy version of an unknown central base ranking. The learning task is to recover the base ranking and the model parameters using access to noisy rankings generated from the model.

Although well understood in the setting of a homogeneous population (a single base ranking), the case of a heterogeneous population (mixture of multiple base rankings) has so far resisted algorithms with guarantees on worst case instances. In this talk I will present the first polynomial time algorithm which provably learns the parameters and the unknown base rankings of a mixture of two Mallows models. A key component of our algorithm is a novel use of tensor decomposition techniques to learn the top-k prefix in both the rankings. Before this work, even the question of identifiability in the case of a mixture of two Mallows models was unresolved.

Joint work with Avrim Blum, Or Sheffet and Aravindan Vijayaraghavan.

Oct 20
Bren Hall 4011
1 pm
Sepehr Akhavan
Graduate Student
Statistics Department
UC Irvine

We propose a joint longitudinal-survival model for associating summary measures of a longitudinally collected biomarker with a time-to-event endpoint. The model is robust to common parametric and semi-parametric assumptions in that it avoids simple distributional assumptions on longitudinal measures and allows for non-proportional hazards covariate effects in the survival component. Specifically, we use a Gaussian process model with a parameter that captures within-subject volatility in the longitudinally sampled biomarker, where the unknown distribution of the parameter is assumed to have a Dirichlet process prior. We then estimate the association between within-subject volatility and the risk of mortality using a flexible survival model constructed via a Dirichlet process mixture of Weibull distributions. Fully joint estimation is performed to account for uncertainty in the estimated within-subject volatility measure. Simulation studies are presented to assess the operating characteristics of the proposed model. Finally, the method is applied to data from the United States Renal Data System where we estimate the association between within-subject volatility in serum album and the risk of mortality among patients with end-stage renal disease.
Oct 27
Bren Hall 4011
1 pm
Yan Liu
Assitant Professor
Department of Computer Science
USC

Many emerging applications of machine learning involve time series and spatio-temporal data. In this talk, I will discuss a collection of machine learning approaches to effectively analyze and model large-scale time series and spatio-temporal data, including temporal causal models, sparse extreme-value models, and fast tensor-based forecasting models. Experiment results will be shown to demonstrate the effectiveness of our models in practical applications, such as climate science, social media and biology.

Bio:

Yan Liu is an assistant professor in Computer Science Department at University of Southern California from 2010. Before that, she was a Research Staff Member at IBM Research. She received her M.Sc and Ph.D. degree from Carnegie Mellon University in 2004 and 2006. Her research interest includes developing scalable machine learning and data mining algorithms with applications to social media analysis, computational biology, climate modeling and business analytics. She has received several awards, including NSF CAREER Award, Okawa Foundation Research Award, ACM Dissertation Award Honorable Mention, Best Paper Award in SIAM Data Mining Conference, Yahoo! Faculty Award and the winner of several data mining competitions, such as KDD Cup and INFORMS data mining competition.

Nov 3
Bren Hall 4011
1 pm
Rodrigo de Salvo Braz
Researcher
AI Center
SRI

inference with uncertainty, and form a main field in Artificial Intelligence today. However, their usual form is restricted to a *propositional* representation, in the same way propositional logic is restricted when compared to relational first-order logic.

For encoding complex probabilistic models, we need richer, relational, quantified representations that yield a form of Probabilistic Logic. While propositionalization is an option for processing such encodings, it is not scalable. The field of *lifted* probabilistic inference seeks to process first-order relational probabilistic models on the relational level, avoiding grounding or propositionalizing as much as possible.

I will talk about relational probabilistic models and give the main ideas about lifted probabilistic inference, and also comment on the relationship of all that to Probabilistic Programming, exemplified by probabilistic programming languages such as Church and BLOG.

Bio:

Rodrigo de Salvo Braz is a Computer Scientist at SRI International. He earned a PhD from the University of Illinois in 2007 with a thesis contributing some of the earliest ideas on Lifted Probabilistic Inference. He did a postdoc at UC Berkeley with Stuart Russell, working on the BLOG language, and is currently the PI of SRI’s project for DARPA’s Probabilistic Programming Languages for Advanced Machine Learning.

Nov 10
Bren Hall 4011
1 pm
Kyle Cranmer
Assistant Professor
Physics Department
NYU

I will review the ways that machine learning is typically used in particle physics, some recent advancements, and future directions. In particular, I will focus on the integration of machine learning and classical statistical procedures. These considerations motivate a novel construction that is a hybrid of machine learning algorithms and more traditional likelihood methods.
Nov 17
Bren Hall 4011
1 pm
Yisong Yue
Assitant Professor
Computing and Mathematical Sciences department
Caltech

Many prediction domains, ranging from content recommendation in a digital system to motion planning in a physical system, require making structured predictions. Broadly speaking, structured prediction refers to any type of prediction performed jointly over multiple input instances, and has been a topic of active research in the machine learning community over the past 10-15 years. However, what has been less studied is how to model structured prediction problems for an interactive system. For example, a recommender system necessarily interacts with users when recommending content, and can learn from the subsequent user feedback on those recommendations. In general, each “prediction” is an interaction where the system not only predicts a structured action to perform, but also receives feedback (i.e., training data) corresponding to the utility of that action.

In this talk, I will describe methods for balancing the tradeoff between exploration (collecting informative feedback) versus exploitation (maximizing system utility) when making structured predictions in an interactive environment. Exploitation corresponds to the standard prediction goal in non-interactive settings, where one predicts the best possible action given the current model. Exploration refers to taking actions that maximize the informativeness of the subsequent feedback, so that one can exploit more reliably in future interactions. I will show how to model and optimize for this tradeoff in two settings: diversified news recommendation (where the feedback comes from users) and adaptive vehicle routing (where the feedback comes from measuring congestion).

This is joint work with Carlos Guestrin, Sue Ann Hong, Ramayya Krishnan and Siyuan Liu.

Nov 24
Bren Hall 4011
1 pm
Majid Janzamin
Graduate Student
EECS
UC Irvine

Learning several latent variable models including multiview mixtures, mixture of Gaussians, independent component analysis and so on can be done by the decomposition of a low-order moment tensor (e.g., 3rd order tensor) to its rank-1 components. Many earlier studies using tensor methods only consider undercomplete regime where the number of hidden components is smaller than the observed dimension. In this talk, we show that the tensor power iteration (as the key element for tensor decomposition) works well even in the overcomplete regime where the hidden dimension is larger than the observed dimension. We establish that a wide range of overcomplete latent variable models can be learned efficiently with low computational and sample complexity through tensor power iteration.
Dec 1
Bren Hall 4011
1 pm
Mohammad Hossein Rohban
PostDoc Research Scholar
Information and Data Sciences
Boston University

Designing latent variable learning methods, which have guaranteed bounded sample complexity, has become one of the recent research trend in the last few years. I will pick topic modeling as an example and discuss various learning algorithms along with their sample/computational complexity bounds. These bounds has been derived under the so-called topic separability assumption, which requires every topic to have at least a single word unique to it. It could be shown that under separability of topics, \ell_1 normalized rows of the word-word co-occurence probability matrix are embedded inside a convex polytope, whose vertices correspond only to the novel words of different topics. Moreover, these vertices characterize the topic proportion matrix. I will elaborate how these two facts could be used to design provable, highly distributable, and computational efficient algorithms for topic modeling.

Baldi, Kobsa, Mark receive Google Faculty Research Awards

Standard

Three ICS professors have received a Google Faculty Research Award as part of Google’s biannual open call for proposals in computer science, engineering and related fields. Computer science Chancellor’s Professor Pierre Baldi, informatics and computer science professor Alfred Kobsa and informatics professor Gloria Mark join several other ICS faculty who have received the award in recent years. Read more

Tomlinson, Patterson receive $400,000 NSF grant for crowdsourcing and food security project

Standard

The National Science Foundation (NSF) has awarded informatics professor Bill Tomlinson $400,000 for his project “Fostering Non-Expert Creation of Sustainable Polycultures through Crowdsourced Data Synthesis.” Associate professor Donald Patterson and Assistant Professor of Crop Sciences at the University of Illinois Sarah Taylor Lovell serve as co-principal investigators.

The project integrates research in computing and sustainability science with the goal of enabling a new approach to sustainable food security. By combining cyber-human systems and crowdsourcing research with the science of agroecology, the project seeks to develop an understanding of how online design tools may contribute to sustainability through enhanced local food production; to use the process of populating a plant species database as an instance of a class of problems amenable to intelligent crowdsourcing; and to pioneer new knowledge in crowdsourcing optimization.

According to the project abstract, “The work will contribute to long-term food security and offer lessons, concepts, methods, and software tools that may be transferable to other sustainability challenges.”

The award is part of the Cyber-Innovation for Sustainability Science and Engineering (CyberSEES) program at NSF, and is funded through the Division of Computing and Communication Foundations (CCF), which supports research and education projects that explore the foundations of computing and communication devices and their usage. According to the CCF website, “CCF-supported projects also investigate revolutionary computing models and technologies based on emerging scientific ideas and integrate research and education activities to prepare future generations of computer science and engineering workers.”

Lee uses crowdsourcing to predict World Cup outcome

Standard

Center member and Professor of Cognitive Science Michael Lee, in partnership with
Ranker, are using the wisdom of the crowd to predict the outcome of the World Cup. Lee and his collaborators developed a model that integrates multiple sources of ranking information available from participating individuals, along with bracket information, to make an overall prediction on each country’s likelihood of winning. See their blog post for more information.

Update: After the tournament, Lee and his collaborators have also analyzed their performance relative to other World Cup prediction models.

‘Deep learning’ makes search for exotic particles easier

Standard

UCI researchers develop computing techniques that could aid hunt for Higgs bosons. Fully automated .deep learning. by computers greatly improves the odds of discovering particles such as the Higgs boson, beating even veteran physicists. abilities, according to findings by UC Irvine researchers published today in the journal Nature Communications. Read more

Smyth to head new Data Science Initiative

Standard

Center member and Professor of Computer Science Padhraic Smyth has been named the director of a new campus-wide initiative with a focus on coordinating and linking the activities of researchers and students across campus involved in various aspects of data science. UCI’s Data Science Initiative was initiative was started on July 1, 2014 and is sponsored by the Provost through the Office of Academic Initiatives. Find out more here.

Spring 2014

Standard

Mar 31
First day of classes
(no seminar)

Apr 7
Bren Hall 4011
1 pm
Aram Galstyan
Research Asst. Professor
Department of Computer Science
USC/ISI

Probabilistic graphical models describe a potentially large number of random variables coupled with each other through some dependency mechanism. One of the main problems underlying graphical models is to infer the values of certain variables based on observations of other variables. Rigorous analysis of statistical inference algorithms can be very complicated even for relatively simple models. Instead, methods based on statistical physics of disordered systems provide a viable alternative. Here I will demonstrate the application of those methods on two problems, MAP estimation of Hidden Markov Models and Stochastic Block Models. The inference in both problems can become highly unstable due to a critical phase transition in the corresponding statistical physical system. Those instabilities are caused by frustrated (e.g., conflicting) constraints that are imposed on the inference objective. I will also discuss how one can mitigate this undesirable feature by active inference, i.e., by adaptively acquiring information about the (true) states of the hidden variables.
Apr 9
Bren Hall 4011
4pm
Misha Chertkov
Theory Division
Los Alamos National Laboratory

Today’s energy systems, such as electric power grids and gas grids, already demonstrate complex nonlinear dynamics where, e.g., collective effects in one exert uncertainty and irregularities on other. These collective dynamics are not well understood and are expected to become more complex tomorrow as the grids are pushed to reliability limits, interdependencies grow, and appliances become more intelligent and autonomous. Tomorrow’s will have to integrate the intermittent power from wind and solar farms whose fluctuating outputs create far more complex stress on power grid operations, often dependent, e.g. in providing fast regulation control, on the gas supply. Conversely, one anticipates significant effect of the wind-following gas fired turbines on reliability of the gas grid. Guarding against the worst of those perturbations will require taking protective measures based on ideas from optimization, control, statistics and physics.

In this talk we introduce a few of the physical, optimization and control principles and phenomena in today’s energy grids and those that are expected to play a major role in tomorrow’s grids.

We illustrate the new science of the energy grids on three examples: (a) discussing an efficient and highly scalable Chance Constrained Optimal Power Flow algorithm providing risk-aware control of the power transmission system under uncertainty associated with fluctuating renewables (wind farms); (b) describing effect of the intermittent power generation on reliability and compression control of the gas grid operations; and (c) briefly discussing examples of interdependencies, reliability troubles and solutions in the low level (distribution) grids.

Bio:Dr. Chertkov’s areas of interest include statistical and mathematical physics applied to energy and communication networks, machine learning, control theory, information theory, computer science, fluid mechanics and optics. Dr. Chertkov received his Ph.D. in physics from the Weizmann Institute of Science in 1996, and his M.Sc. in physics from Novosibirsk State University in 1990. After his Ph.D., Dr. Chertkov spent three years at Princeton University as a R.H. Dicke Fellow in the Department of Physics. He joined Los Alamos National Lab in 1999, initially as a J.R. Oppenheimer Fellow in the Theoretical Division. He is now a technical staff member in the same division. Dr. Chertkov has published more than 130 papers in these research areas. He is an editor of the Journal of Statistical Mechanics (JSTAT), associate editor of IEEE Transactions on Control of Network Systems, a fellow of the American Physical Society (APS), and a Founding Faculty Fellow of Skoltech – young graduate school built in Moscow (Russia).

Apr 14
Bren Hall 4011
1 pm
James Sharpnack
Postdoctoral Researcher
Mathematics Department
UC San Diego

We will discuss the detection of patterns over graphs from noisy measurements. This problem is relevant to many applications including detecting anomalies in sensor and computer networks, brain activity, co-expressions in gene networks, disease outbreaks, etc. Beyond its wide applicability, graph structured anomaly detection serves as a case study in the difficulty of balancing computational complexity with statistical power. We develop from first principles the generalized likelihood ratio test (GLRT) for determining if there is a well connected region of activation over the vertices in the graph with Gaussian noise. Due to the combinatorial nature of this test, the GLRT is computationally infeasible. We discuss two approaches, relaxing the combinatorial GLRT and a wavelet construction over graphs, to overcome this issue.

One such relaxation that we develop is the graph ellipsoid scan statistic, whose statistical performance is characterized by the spectrum of the graph Laplacian. Another relaxation that we have developed is the Lovasz extended scan statistic (LESS), which is based on submodular optimization and the performance is described using electrical network theory. We then introduce the spanning tree wavelet basis over graphs, a localized basis that reflects the topology of the graph. We show that using the uniform spanning tree in the basis construction yields a randomized test with performance guarantees similar to that of the LESS. For each of these tests we compare their statistical guarantees to an information theoretic lower bound. Finally, we consider specific graph models, such as the torus, k-nearest neighbor graphs, and epsilon-random graphs and show that for these graphs we achieve near-optimal risk consistency regimes.

Apr 28
Bren Hall 4011
1 pm
Qiang Liu
PhD Candidate
Department of Computer Science
University of California, Irvine

Modern data science applications increasingly involve statistical learning on very large datasets, where the data instances are stored in a distributed way across different nodes of the clusters, with expensive communication costs between nodes. We study a simple communication-efficient learning algorithm that first calculates the local maximum likelihood estimates (MLE) based on the subsets of datasets, and then combines the local MLEs to achieve the best possible approximation to the global MLE, based on the whole dataset jointly. A naive and commonly used combination method is to take the linear average of the local ML estimates; this method; however, this has a sub-optimal error rate, and more critically, can easily break down in practical cases where the parameters are either unidentifiable (e.g., in mixture models), non-additive, or have complicated structure. In this work, we propose a KL-divergence-based combination method that achieves the best possible error rate, and avoids weaknesses of linear averaging. Perhaps surprisingly, we show that our algorithm exactly recovers the global MLE under full exponential families, and its error rate on general distributions are related to how nearly “exponential family” they are — formally captured by Efron’s statistical curvature, originally defined by Efron (1975) to extend Fisher and Rao’s theory of information loss and second order efficiency of the MLE. In addition, we show that the statistical curvature equals the lower bound of the asymptotic error rate of arbitrary combination methods, and hence represents an intrinsic difficulty measurement of distributed learning in this setting.
May 5
Bren Hall 4011
1 pm
Dennis Park
PhD Candidate
Department of Computer Science
University of California, Irvine

Automatically tracking people and their body poses in unconstrained videos is an important task, as it serves as a foundation for high-level reasoning such as activity recognition. This task is difficult for two reason: a) building an accurate pose detector is hard, and b) dependencies of body parts over space and time is hard to model or causes intractable computation.

This talk consists of two parts. In the first part, I address two key challenges in a common pipeline of pose tracker: 1) detecting small people and 2) extracting diverse set of candidate poses from each frame. I describe novel multiresolutional representation, motion descriptors, and inference algorithms to tackle these challenges.

In the second part, I propose the use of synthetic training frames as a mean to “overfit” a single video. Using a simple synthesis engine and detailed annotation of the first frame, we synthesize potential future video frames. We argue that this large customized training serves as an ideal training set relieving the burden of modeling, and provides us with insights on critical components of a working tracker.

May 12
Bren Hall 4011
1 pm
Tijl de Bie
Reader/Associate Professor
Department of Engineering Mathematics
University of Bristol

Exploratory data mining methods, such as methods for clustering, association analysis, community detection, dimensionality reduction, etc., aim to assist a user in improving their understanding about the data. In this talk I will discuss a simple mathematical model for the exploratory data mining process that makes it possible to quantify how effective any given pattern (in the broad sense) is for this purpose. This quantification is naturally subjective, dependent on any prior beliefs the user may hold about the data.

While the proposed model is abstract and generic, it suggests practical ways for developing specific exploratory data mining methods that present patterns that are subjectively interesting to the user. I will illustrate this by showing how it leads to principled approaches for alternative clustering, for community detection in networks, and for association analysis in simple data tables as well as in relational databases.

From May 2014 my research on this topic will be funded by an ERC Consolidator Grant titled “Formalising Subjective Interestingness in Exploratory Data mining” (FORSIED). Relevant references: http://www.tijldebie.net/projects/fiip

Bio: Tijl De Bie is currently a Reader (Associate Professor) at the University of Bristol, where he was appointed Lecturer (Assistant Professor) in January 2007. Before that, he was a postdoctoral researcher at the KU Leuven (Belgium) and the University of Southampton. He completed his PhD on machine learning and advanced optimization techniques in 2005 at the KU Leuven. During his PhD he also spent a combined total of about 1 year as a visiting research scholar in U.C. Berkeley and U.C. Davis. He is currently most actively interested in the formalization of subjective interestingness in exploratory data mining, and in the use of machine learning and data mining for music informatics as well as for web and social media mining. He currently holds a prestigious ERC Consolidator Grant titled “Formalising Subjective Interestingness in Exploratory Data Mining” (FORSIED).

May 19
Bren Hall 4011
1 pm
Xiangxin Zhu
PhD Candidate
Department of Computer Science
University of California, Irvine

We argue that object subcategories follow a long-tail distribution: a few subcategories are common, while many are rare. We describe distributed algorithms for learning large-mixture models that capture long-tail distributions, which are hard to model with current approaches. We introduce a generalized notion of mixtures (or subcategories) that allow for examples to be shared across multiple subcategories. We optimize our models with a discriminative clustering algorithm that searches over mixtures in a distributed, “brute-force” fashion. We used our scalable system to train tens of thousands of deformable mixtures for VOC objects. We demonstrate significant performance improvements, particularly for object classes that are characterized by large appearance variation.
May 26
Memorial Day
(no seminar)

June 2
Bren Hall 4011
1 pm
Bo Zhou
PhD Candidate
Department of Statistics
University of California, Irvine

Neurophysiological studies of the decision-making process commonly involve analyzing and modeling spikes produced by a neuron. Complex behaviors, however, are driven by networks of neurons. We propose a flexible Bayesian model for capturing temporal dependencies between multiple neurons under different types of decisions (e.g., safe vs. risky; good vs. bad). Using our model, we are able to identify a small subset of neurons that are involved in the decision-making process and detect the dynamics of their dependence structure.