Rina Dechter Receives AI Journal’s Classic Paper Award

Standard

Distinguished Prof. Rina Dechter has been awarded the 2020 Classic Paper Award from the Artificial Intelligence Journal. Given to papers “published at least 15 calendar years ago in the AI Journal that are exceptional in their significance and impact,” this year’s award recognized “Temporal Constraint Networks,” which Dechter co-authored with Itay Meiri and Judea Pearl in 1991.

Read more:  https://www.ics.uci.edu/community/news/view_news?id=1866

Spring 2019

Standard
Apr 8
No Seminar

Apr 15
Bren Hall 4011
1 pm
Daeyun Shin
PhD Candidate
Dept of Computer Science
UC Irvine

In this presentation, I will present our approach to the problem of automatically reconstructing a complete 3D model of a scene from a single RGB image. This challenging task requires inferring the shape of both visible and occluded surfaces. Our approach utilizes viewer-centered, multi-layer representation of scene geometry adapted from recent methods for single object shape completion. To improve the accuracy of view-centered representations for complex scenes, we introduce a novel “Epipolar Feature Transformer” that transfers convolutional network features from an input view to other virtual camera viewpoints, and thus better covers the 3D scene geometry. Unlike existing approaches that first detect and localize objects in 3D, and then infer object shape using category-specific models, our approach is fully convolutional, end-to-end differentiable, and avoids the resolution and memory limitations of voxel representations. We demonstrate the advantages of multi-layer depth representations and epipolar feature transformers on the reconstruction of a large database of indoor scenes.

Project page: https://www.ics.uci.edu/~daeyuns/layered-epipolar-cnn/

Apr 22
Bren Hall 4011
1 pm
Mike Pritchard
Assistant Professor
Dept. of Earth System Sciences
University of California, Irvine

I will discuss machine-learning emulation of O(100M) cloud-resolving simulations of moist turbulence for use in multi-scale global climate simulation. First, I will present encouraging results from pilot tests on an idealized ocean-world, in which a fully connected deep neural network (DNN) is found to be capable of emulating explicit subgrid vertical heat and vapor transports across a globally diverse population of convective regimes. Next, I will demonstrate that O(10k) instances of the DNN emulator spanning the world are able to feed back realistically with a prognostic global host atmospheric model, producing viable ML-powered climate simulations that exhibit realistic space-time variability for convectively coupled weather dynamics and even some limited out-of-sample generalizability to new climate states beyond the training data’s boundaries. I will then discuss a new prototype of the neural network under development that includes the ability to enforce multiple physical constraints within the DNN optimization process, which exhibits potential for further generalizability. Finally, I will conclude with some discussion of the unsolved technical issues and interesting philosophical tensions being raised in the climate modeling community by this disruptive but promising approach for next-generation global simulation.
Apr 29
Bren Hall 4011
1 pm
Nick Gallo
PhD Candidate
Department of Computer Science
University of California, Irvine

Large problems with repetitive sub-structure arise in many domains such as social network analysis, collective classification, and database entity resolution. In these instances, individual data is augmented with a small set of rules that uniformly govern the relationship among groups of objects (for example: “the friend of my friend is probably my friend” in a social network). Uncertainty is captured by a probabilistic graphical model structure. While theoretically sound, standard reasoning techniques cannot be applied due to the massive size of the network (often millions of random variable and trillions of factors). Previous work on lifted inference efficiently exploits symmetric structure in graphical models, but breaks down in the presence of unique individual data (contained in all real-world problems). Current methods to address this problem are largely heuristic. In this presentation we describe a coarse to fine approximate inference framework that initially treats all individuals identically, gradually relaxing this restriction to finer sub-groups. This produces a sequence of inference objective bounds of monotonically increasing cost and accuracy. We then discuss our work on incorporating high-order inference terms (over large subsets of variables) into lifted inference and ongoing challenges in this area.
May 13
Bren Hall 4011
1 pm
Matt Gardner
Senior Research Scientist
Allen Institute of Artificial Intelligence

Reading machines that truly understood what they read would change the world, but our current best reading systems struggle to understand text at anything more than a superficial level. In this talk I try to reason out what it means to “read”, and how reasoning systems might help us get there. I will introduce three reading comprehension datasets that require systems to reason at a deeper level about the text that they read, using numerical, coreferential, and implicative reasoning abilities. I will also describe some early work on models that can perform these kinds of reasoning.

Bio: Matt is a senior research scientist at the Allen Institute for Artificial Intelligence (AI2) on the AllenNLP team, and a visiting scholar at UCI. His research focuses primarily on getting computers to read and answer questions, dealing both with open domain reading comprehension and with understanding question semantics in terms of some formal grounding (semantic parsing). He is particularly interested in cases where these two problems intersect, doing some kind of reasoning over open domain text. He is the original author of the AllenNLP toolkit for NLP research, and he co-hosts the NLP Highlights podcast with Waleed Ammar.

May 27
No Seminar (Memorial Day)

June 3
Bren Hall 4011
12:00
Peter Sadowski
Assistant Professor
Information and Computer Sciences
University of Hawaii Manoa

New technologies for remote sensing and astronomy provide an unprecedented view of Earth, our Sun, and beyond. Traditional data-analysis pipelines in oceanography, atmospheric sciences, and astronomy struggle to take full advantage of the massive amounts of high-dimensional data now available. I will describe opportunities for using deep learning to process satellite and telescope data, and discuss recent work mapping extreme sea states using Satellite Aperture Radar (SAR), inferring the physics of our sun’s atmosphere, and detecting anomalous astrophysical events in other systems, such as comets transiting distant stars.

Bio: Peter Sadowski is an Assistant Professor of Information and Computer Sciences at the University of Hawaii Manoa and Co-Director of the AI Precision Health Institute at the University of Hawaii Cancer Center. He completed his Ph.D. and Postdoc at University of California Irvine, and his undergraduate studies at Caltech. His research focuses on deep learning and its applications to the natural sciences, particularly those at the intersection of machine learning and physics.

June 3
Bren Hall 4011
1 pm
Max Welling
Research Chair, University of Amsterdam
VP Technologies, Qualcomm

Deep learning has boosted the performance of many applications tremendously, such as object classification and detection in images, speech recognition and understanding, machine translation, game play such as chess and go etc. However, these all constitute reasonably narrowly and well defined tasks for which it is reasonable to collect very large datasets. For artificial general intelligence (AGI) we will need to learn from a small number of samples, generalize to entirely new domains, and reason about a problem. What do we need in order to make progress to AGI? I will argue that we need to combine the data generating process, such as the physics of the domain and the causal relationships between objects, with the tools of deep learning. In this talk I will present a first attempt to integrate the theory of graphical models, which arguably was the dominating modeling machine learning paradigm around the turn of the twenty-first century, with deep learning. Graphical models express the relations between random variables in an interpretable way, while probabilistic inference in such networks can be used to reason about these variables. We will propose a new hybrid paradigm where probabilistic message passing in such networks is enhanced with graph convolutional neural networks to improve the ability of such systems to reason and make predictions.
June 10
No Seminar (Finals)

Faculty Positions at UC Irvine

Standard

Faculty Positions at UC Irvine

Application deadline: Jan 15th, 2019 (Applications received by January 1, 2019 will receive fullest consideration.)

Apply online at: https://recruit.ap.uci.edu/apply/JPF04950

The Department of Computer Science in the Donald Bren School of Information and Computer Sciences (ICS) at the University of California, Irvine (UCI) invites applications for multiple tenure-track assistant professor or tenured associate/full professor positions beginning July 1, 2019. The Department is interested in individuals with research interests in all aspects of algorithms, artificial intelligence, machine learning, and theory of computing. One opening is targeted at individuals whose computer science expertise aligns with the growing UCI Data Science Initiative.

Fall 2018

Standard



Oct 1
No Seminar

 

Oct 8
Bren Hall 4011
1 pm
Matt Gardner
Research Scientist
Allen Institute for AI

The path to natural language understanding goes through increasingly challenging question answering tasks. I will present research that significantly improves performance on two such tasks: answering complex questions over tables, and open-domain factoid question answering. For answering complex questions, I will present a type-constrained encoder-decoder neural semantic parser that learns to map natural language questions to programs. For open-domain factoid QA, I will show that training paragraph-level QA systems to give calibrated confidence scores across paragraphs is crucial when the correct answer-containing paragraph is unknown. I will conclude with some thoughts about how to combine these two disparate QA paradigms, towards the goal of answering complex questions over open-domain text.

Bio:Matt Gardner is a research scientist at the Allen Institute for Artificial Intelligence (AI2), where he has been exploring various kinds of question answering systems. He is the lead designer and maintainer of the AllenNLP toolkit, a platform for doing NLP research on top of pytorch. Matt is also the co-host of the NLP Highlights podcast, where, with Waleed Ammar, he gets to interview the authors of interesting NLP papers about their work. Prior to joining AI2, Matt earned a PhD from Carnegie Mellon University, working with Tom Mitchell on the Never Ending Language Learning project.

Oct 22
Bren Hall 4011
1 pm
Assistant Professor
Dept. of Computer Science
UC Irvine

I will give an overview of some exciting recent developments in deep probabilistic modeling, which combines deep neural networks with probabilistic models for unsupervised learning. Deep probabilistic models are capable of synthesizing artificial data that highly resemble the training data, and are able fool both machine learning classifiers as well as humans. These models have numerous applications in creative tasks, such as voice, image, or video synthesis and manipulation. At the same time, combining neural networks with strong priors results in flexible yet highly interpretable models for finding hidden structure in large data sets. I will summarize my group’s activities in this space, including measuring semantic shifts of individual words over hundreds of years, summarizing audience reactions to movies, and predicting the future evolution of video sequences with applications to neural video coding.
Oct 25
Bren Hall 3011
3 pm
(Note: different day (Thurs), time (3pm), and location (3011) relative to usual Monday seminars)

Steven Wright
Professor
Department of Computer Sciences
University of Wisconsin, Madison

Many of the computational problems that arise in data analysis and
machine learning can be expressed mathematically as optimization problems. Indeed, much new algorithmic research in optimization is being driven by the need to solve large, complex problems from these areas. In this talk, we review a number of canonical problems in data analysis and their formulations as optimization problems. We will cover support vector machines / kernel learning, logistic regression (including regularized and multiclass variants), matrix completion, deep learning, and several other paradigms.
Oct 29
Bren Hall 4011
1 pm
Alex Psomas
Postdoctoral Researcher
Computer Science Department
Carnegie Mellon University

We study the problem of fairly allocating a set of indivisible items among $n$ agents. Typically, the literature has focused on one-shot algorithms. In this talk we depart from this paradigm and allow items to arrive online. When an item arrives we must immediately and irrevocably allocate it to an agent. A paradigmatic example is that of food banks: food donations arrive, and must be delivered to nonprofit organizations such as food pantries and soup kitchens. Items are often perishable, which is why allocation decisions must be made quickly, and donated items are typically leftovers, leading to lack of information about items that will arrive in the future. Which recipient should a new donation go to? We approach this problem from different angles.

In the first part of the talk, we study the problem of minimizing the maximum envy between any two recipients, after all the goods have been allocated. We give a polynomial-time, deterministic and asymptotically optimal algorithm with vanishing envy, i.e. the maximum envy divided by the number of items T goes to zero as T goes to infinity. In the second part of the talk, we adopt and further develop an emerging paradigm called virtual democracy. We will take these ideas all the way to practice. In the last part of the talk I will present some results from an ongoing work on automating the decisions faced by a food bank called 412 Food Rescue, an organization in Pittsburgh that matches food donations with non-profit organizations.

Nov 5
Bren Hall 4011
1 pm
Fred Park
Associate Professor
Dept of Math & Computer Science
Whittier College

In this talk I will give a brief overview of the segmentation and tracking problems and will propose a new model that tackles both of them. This model incorporates a weighted difference of anisotropic and isotropic total variation (TV) norms into a relaxed formulation of the Mumford-Shah (MS) model. We will show results exceeding those obtained by the MS model when using the standard TV norm to regularize partition boundaries. Examples illustrating the qualitative differences between the proposed model and the standard MS one will be shown as well. I will also talk about a fast numerical method that is used to optimize the proposed model utilizing the difference-of-convex algorithm (DCA) and the primal dual hybrid gradient (PDHG) method. Finally, future directions will be given that could harness the power of convolution nets for more advanced segmentation tasks.
Nov 12
No Seminar (Veterans Day)

 

Nov 19
Bren Hall 4011
1 pm
Philip Nelson
Director of Engineering
Google Research

Google Accelerated Sciences is a translational research team that brings Google’s technological expertise to the scientific community. Recent advances in machine learning have delivered incredible results in consumer applications (e.g. photo recognition, language translation), and is now beginning to play an important role in life sciences. Taking examples from active collaborations in the biochemical, biological, and biomedical fields, I will focus on how our team transforms science problems into data problems and applies Google’s scaled computation, data-driven engineering, and machine learning to accelerate discovery. See http://g.co/research/gas for our publications and more details.

Bio:
Philip Nelson is a Director of Engineering in Google Research. He joined Google in 2008 and was previously responsible for a range of Google applications and geo services. In 2013, he helped found and currently leads the Google Accelerated Science team that collaborates with academic and commercial scientists to apply Google’s knowledge and experience and technologies to important scientific problems. Philip graduated from MIT in 1985 where he did award-winning research on hip prosthetics at Harvard Medical School. Before Google, Philip helped found and lead several Silicon Valley startups in search (Verity), optimization (Impresse), and genome sequencing (Complete Genomics) and was also an Entrepreneur in Residence at Accel Partners.

Nov 26
Bren Hall 4011
1 pm
Richard Futrell
Assistant Professor
Dept of Language Science
UC Irvine


Why is natural language the way it is? I propose that human languages can be modeled as solutions to the problem of efficient communication among intelligent agents with certain information processing constraints, in particular constraints on short-term memory. I present an analysis of dependency treebank corpora of over 50 languages showing that word orders across languages are optimized to limit short-term memory demands in parsing. Next I develop a Bayesian, information-theoretic model of human language processing, and show that this model can intuitively explain an apparently paradoxical class of comprehension errors made by both humans and state-of-the-art recurrent neural networks (RNNs). Finally I combine these insights in a model of human languages as information-theoretic codes for latent tree structures, and show that optimization of these codes for expressivity and compressibility results in grammars that resemble human languages.
Dec 3
No Seminar (NIPS)

 

Workshop for the Philosophy of Machine Learning

Standard

UC Irvine held a very successful workshop on the “Philosophy of Machine Learning” on March 17th & 18th, in the Donald Bren Hall Conference Center (DBH 6011). More information may be found at: https://philmachinelearning.wordpress.com/program/.

Organizers: Andrew Holbrook (Statistics) and Kino Zhao (Logic and Philosophy of Science)

Sponsors: UCI School of Social Sciences; UCI Dept of Logic & Philosophy of Science; UCI Data Science Initiative; and Dr. Babak Shahbaba (via NSF).

Fall 2017

Standard





Oct 9
No Seminar (Columbus Day)

Oct 16
Bren Hall 3011
1 pm
Bailey Kong
PhD Candidate
Department of Computer Science
University of California, Irvine

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for these specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Finally, we introduce a discriminatively trained variant and fine-tune our system end-to-end, obtaining state-of-the-art performance.
Oct 23
Bren Hall 3011
1 pm
Geng Ji
PhD Candidate
Department of Computer Science
University of California, Irvine

We propose a hierarchical generative model that captures the self-similar structure of image regions as well as how this structure is shared across image collections. Our model is based on a novel, variational interpretation of the popular expected patch log-likelihood (EPLL) method as a model for randomly positioned grids of image patches. While previous EPLL methods modeled image patches with finite Gaussian mixtures, we use nonparametric Dirichlet process (DP) mixtures to create models whose complexity grows as additional images are observed. An extension based on the hierarchical DP then captures repetitive and self-similar structure via image-specific variations in cluster frequencies. We derive a structured variational inference algorithm that adaptively creates new patch clusters to more accurately model novel image textures. Our denoising performance on standard benchmarks is superior to EPLL and comparable to the state-of-the-art, and we provide novel statistical justifications for common image processing heuristics. We also show accurate image inpainting results.
Oct 30
Bren Hall 4011
1 pm
Qi Lou
PhD Candidate
Department of Computer Science
University of California, Irvine

Computing the partition function is a key inference task in many graphical models. In this paper, we propose a dynamic importance sampling scheme that provides anytime finite-sample bounds for the partition function. Our algorithm balances the advantages of the three major inference strategies, heuristic search, variational bounds, and Monte Carlo methods, blending sampling with search to refine a variationally defined proposal. Our algorithm combines and generalizes recent work on anytime search and probabilistic bounds of the partition function. By using an intelligently chosen weighted average over the samples, we construct an unbiased estimator of the partition function with strong finite-sample confidence intervals that inherit both the rapid early improvement rate of sampling with the long-term benefits of an improved proposal from search. This gives significantly improved anytime behavior, and more flexible trade-offs between memory, time, and solution quality. We demonstrate the effectiveness of our approach empirically on real-world problem instances taken from recent UAI competitions.
Nov 6
Bren Hall 3011
1 pm
Vladimir Minin
Professor
Department of Statistics
University of California, Irvine

Estimating evolutionary trees, called phylogenies or genealogies, is a fundamental task in modern biology. Once phylogenetic reconstruction is accomplished, scientists are faced with a challenging problem of interpreting phylogenetic trees. In certain situations, a coalescent process, a stochastic model that randomly generates evolutionary trees, comes to rescue by probabilistically connecting phylogenetic reconstruction with the demographic history of the population under study. An important application of the coalescent is phylodynamics, an area that aims at reconstructing past population dynamics from genomic data. Phylodynamic methods have been especially successful in analyses of genetic sequences from viruses circulating in human populations. From a Bayesian hierarchal modeling perspective, the coalescent process can be viewed as a prior for evolutionary trees, parameterized in terms of unknown demographic parameters, such as the population size trajectory. I will review Bayesian nonparametric techniques that can accomplish phylodynamic reconstruction, with a particular attention to analysis of genetic data sampled serially through time.
Nov 20
No Seminar (Thanksgiving Week)

Dec 4
No Seminar (NIPS Conference)

Dec 13
Bren Hall 4011
1 pm
Yutian Chen
Research Scientist
Google DeepMind

We learn recurrent neural network optimizers trained on simple synthetic functions by gradient descent. We show that these learned optimizers exhibit a remarkable degree of transfer in that they can be used to efficiently optimize a broad range of derivative-free black-box functions, including Gaussian process bandits, simple control objectives, global optimization benchmarks and hyper-parameter tuning tasks. Up to the training horizon, the learned optimizers learn to trade-off exploration and exploitation, and compare favourably with heavily engineered Bayesian optimization packages for hyper-parameter tuning.

Singh talk, OC ACM Chapter

Standard

Center member Prof. Sameer Singh will discuss his research on “Explaining Black-Box Machine Learning Predictions,” which addresses the important and challenging problem of enabling people to understand, predict and trust the behavior of machine learning models and algorithms. More information and online registration is available on the Orange County ACM Chapter Meetup Event page.

Spring 2017

Standard

Apr 10
Bren Hall 4011
1 pm
Mike Izbicki
PhD Candidate
Department of Computer Science
University of California, Riverside

I’ll present two algorithms that use divide and conquer techniques to speed up learning. The first algorithm (called OWA) is a communication efficient distributed learner. OWA uses only two rounds of communication, which is sufficient to achieve optimal learning rates. The second algorithm is a meta-algorithm for fast cross validation. I’ll show that for any divide and conquer learning algorithm, there exists a fast cross validation procedure whose run time is asymptotically independent of the number of cross validation folds.
Apr 17
Bren Hall 4011
1 pm
James Supancic
PhD Candidate
Department of Computer Science
University of California, Irvine

Cameras can naturally capture sequences of images, or videos. And when understanding videos, connecting the past with the present requires tracking. Sometimes tracking is easy. We focus on two challenges which make tracking harder: long-term occlusions and appearance variations. To handle total occlusion, a tracker must know when it has lost track and how to reinitialize tracking when the target reappears. Reinitialization requires good appearance models. We build appearance models for humans and hands, with a particular emphasis on robustness and occlusion. For the second challenge, appearance variation, the tracker must know when and how to re-learn (or update) an appearance model. This challenge leads to the classic problem of drift: aggressively learning appearance changes allows small errors to compound, as elements of the background environment pollute the appearance model. We propose two solutions. First, we consider self-paced learning, wherein a tracker begins by learning from frames it finds easy. As the tracker becomes better at recognizing the target, it begins to learn from harder frames. We also develop a data-driven approach: train a tracking policy to decide when and how to update an appearance model. To take this direct approach to “learning when to learn”, we exploit large-scale Internet data through reinforcement learning. We interpret the resulting policy and conclude with a generalization for tracking multiple objects.
Apr 24
Bren Hall 4011
1 pm
David R Thompson

Jet Propulsion Laboratory
California Institute of Technology

Imaging spectrometers enable quantitative maps of physical and chemical properties at high spatial resolution. They have a long history of deployments for mapping terrestrial and coastal aquatic ecosystems, geology, and atmospheric properties. They are also critical tools for exploring other planetary bodies. These high-dimensional spatio-spectral datasets pose a rich challenge for computer scientists and algorithm designers. This talk will provide an introduction to remote imaging spectroscopy in the Visible and Shortwave Infrared, describing the measurement strategy and data analysis considerations including atmospheric correction. We will describe historical and current instruments, software, and public datasets.

Bio: David R. Thompson is a researcher and Technical Group Lead in the Imaging Spectroscopy group at the NASA Jet Propulsion Laboratory. He is Investigation Scientist for the AVIRIS imaging spectrometer project. Other roles include software lead for the NEAScout mission, autonomy software lead for the PIXL instrument, and algorithm development for diverse JPL airborne imaging spectrometer campaigns. He is recipient of the NASA Early Career Achievement Medal and the JPL Lew Allen Award.

May 1
Bren Hall 4011
1 pm
Weining Shen
Assistant Professor
Department of Statistics
University of California, Irvine

Bayesian nonparametric (BNP) models have been widely used in modern applications. In this talk, I will discuss some recent theoretical results for the commonly used BNP methods from a frequentist asymptotic perspective. I will cover a set of function estimation and testing problems such as density estimation, high-dimensional partial linear regression, independence testing, and independent component analysis. Minimax optimal convergence rates, adaptation and Bernstein-von Mises theorem will be discussed.
May 8
Bren Hall 4011
1 pm
P. Anandan
VP for Research
Adobe Systems

During the last two decades the experience of consumers has been undergoing a fundamental and dramatic transformation – giving a rich variety of informed choices, online shopping, consumption of news and entertainment on the go, and personalized shopping experiences. All of this has been powered by the massive amounts of data that is continuously being collected and the application of machine learning, data science and AI techniques to it.

Adobe is a leader the Digital Marketing and is the leading provider of solutions to enterprises that are serving customers both in the B2B and B2C space. In this talk, we will outline the current state of the industry and the technology that is behind it, how Data Science and Machine Learning are gradually beginning to transform the experiences of the consumer as well as the marketer. We will also speculate on how recent developments in Artificial Intelligence will lead to deep personalization and richer experiences for the consumer as well as more powerful and tailored end-to-end capabilities for the marketer.

Bio: Dr. P. Anandan is Vice President in Adobe Research, responsible for developing research strategy for Adobe, especially in Digital Marketing, and Leading the Adobe India Research lab. An emphasis of this lab is on Big Data Experience and Intelligence. At Adobe, he is also leading efforts in applying A.I. to Big Data. Dr. Anandan is an expert in Computer Vision with more than 60 publications that have earned 14,500 citations in Google Scholar. His research areas include visual motion analysis, video surveillance, and 3D scene modeling from images and video. His papers have won multiple awards including the Helmholtz Prize, for long term fundamental contributions to computer vision research. Prior to joining Adobe Dr. Anandan had a long tenure with Microsoft Research in Redmond, WA, and became a Distinguished Scientist. He was the Managing Director of Microsoft Research India, which he founded. Most recently he was the Managing Director of Microsoft Research’s Worldwide Outreach. He earned a PhD from the University of Massachusetts specializing in Computer Vision and Artificial Intelligence. He started as an assistant professor at Yale University before moving on to work in Video Information Processing at the David Sarnoff Research Center. His research has been used in DARPA’s Video Surveillance and Monitoring program as well as in creating special effects in the movies “What Dreams May Come”, “Prince of Egypt,” and “The Matrix.” Dr. Anandan is the recipient of Distinguished Alumnus awards from both University of Massachusetts and the Indian Institute of Technology Madras, where he earned a B. Tech. in Electrical Engineering. He was inducted into the Nebraska Hall of Computing by the University of Nebraska, from where he obtained an MS in Computer Science. He is currently a member of the Board of Governors of IIT Madras.

May 15
Bren Hall 4011
1 pm
Ndapa Nakashole
Assistant Professor
Computer Science and Engineering
University of California, San Diego

Zero-shot learning is used in computer vision, natural language, and other domains to induce mapping functions that project vectors from one vector space to another. This is a promising approach to learning, when we do not have labeled data for every possible label we want a system to recognize. This setting is common when doing NLP for low-resource languages, where labeled data is very scare. In this talk, I will present our work on improving zero-shot learning methods for the task of word-level translation.

Bio: Ndapa Nakashole is an Assistant Professor in the Department of Computer Science and Engineering at the University of California, San Diego. Prior to UCSD, she was a Postdoctoral Fellow in the Machine Learning Department at Carnegie Mellon University. She obtained her PhD from Saarland University, Germany, for work done at the Max Planck Institute for Informatics at Saarbrücken.

May 22
Bren Hall 4011
1 pm
Batya Kenig
Postdoctoral Scholar
Department of Information Systems Engineering
Technion – Israel Institute of Technology

We propose a novel framework wherein probabilistic preferences can be naturally represented and analyzed in a probabilistic relational database. The framework augments the relational schema with a special type of a relation symbol, a preference symbol. A deterministic instance of this symbol holds a collection of binary relations. Abstractly, the probabilistic variant is a probability space over databases of the augmented form (i.e., probabilistic database). Effectively, each instance of a preference symbol can be represented as a collection of parametric preference distributions such as Mallows. We establish positive and negative complexity results for evaluating Conjunctive Queries (CQs) over databases where preferences are represented in the Repeated Insertion Model (RIM), Mallows being a special case. We show how CQ evaluation reduces to a novel inference problem (of independent interest) over RIM, and devise a solver with polynomial data complexity.
May 29
No Seminar (Memorial Day)

Jun 5
Bren Hall 4011
1 pm
Yonatan Bisk
Postdoctoral Scholar
Information Sciences Institute
University of Southern California

The future of self-driving cars, personal robots, smart homes, and intelligent assistants hinges on our ability to communicate with computers. The failures and miscommunications of Siri-style systems are untenable and become more problematic as machines become more pervasive and are given more control over our lives. Despite the creation of massive proprietary datasets to train dialogue systems, these systems still fail at the most basic tasks. Further, their reliance on big data is problematic. First, successes in English cannot be replicated in most of the 6,000+ languages of the world. Second, while big data has been a boon for supervised training methods, many of the most interesting tasks will never have enough labeled data to actually achieve our goals. It is therefore important that we build systems which can learn from naturally occurring data and grounded situated interactions.

In this talk, I will discuss work from my thesis on the unsupervised acquisition of syntax which harnesses unlabeled text in over a dozen languages. This exploration leads us to novel insights into the limits of semantics-free language learning. Having isolated these stumbling blocks, I’ll then present my recent work on language grounding where we attempt to learn the meaning of several linguistic constructions via interaction with the world.

Bio: Yonatan Bisk’s research focuses on Natural Language Processing from naturally occurring data (unsupervised and weakly supervised data). He is a postdoc researcher with Daniel Marcu at USC’s Information Sciences Institute. Previously, he received his Ph.D. from the University of Illinois at Urbana-Champaign under Julia Hockenmaier and his BS from the University of Texas at Austin.

Winter 2017

Standard

Jan 16
No Seminar (MLK Day)

Jan 23
Bren Hall 4011
1 pm
Mohammad Ghavamzadeh
Senior Analytics Researcher
Adobe Research

In online advertisement as well as many other fields such as health informatics and computational finance, we often have to deal with the situation in which we are given a batch of data generated by the current strategy(ies) of the company (hospital, investor), and we are asked to generate a good or an optimal strategy. Although there are many techniques to find a good policy given a batch of data, there are not much results to guarantee that the obtained policy will perform well in the real system without deploying it. On the other hand, deploying a policy might be risky, and thus, requires convincing the product (hospital, investment) manager that it is not going to harm the business. This is why it is extremely important to devise algorithms that generate policies with performance guarantees.

In this talk, we discuss four different approaches to this fundamental problem, we call them model-based, model-free, online, and risk-sensitive. In the model-based approach, we first use the batch of data and build a simulator that mimics the behavior of the dynamical system under studies (online advertisement, hospital’s ER, financial market), and then use this simulator to generate data and learn a policy. The main challenge here is to have guarantees on the performance of the learned policy, given the error in the simulator. This line of research is closely related to the area of robust learning and control. In the model-free approach, we learn a policy directly from the batch of data (without building a simulator), and the main question is whether the learned policy is guaranteed to perform at least as well as a baseline strategy. This line of research is related to off-policy evaluation and control. In the online approach, the goal is to control the exploration of the algorithm in a way that never during its execution the loss of using it instead of the baseline strategy is more than a given margin. In the risk-sensitive approach, the goal is to learn a policy that manages risk by minimizing some measure of variability in the performance in addition to maximizing a standard criterion. We present algorithms based on these approaches and demonstrate their usefulness in real-world applications such as personalized ad recommendation, energy arbitrage, traffic signal control, and American option pricing.

Bio:Mohammad Ghavamzadeh received a Ph.D. degree in Computer Science from the University of Massachusetts Amherst in 2005. From 2005 to 2008, he was a postdoctoral fellow at the University of Alberta. He has been a permanent researcher at INRIA in France since November 2008. He was promoted to first-class researcher in 2010, was the recipient of the “INRIA award for scientific excellence” in 2011, and obtained his Habilitation in 2014. He is currently (from October 2013) on a leave of absence from INRIA working as a senior analytics researcher at Adobe Research in California, on projects related to digital marketing. He has been an area chair and a senior program committee member at NIPS, IJCAI, and AAAI. He has been on the editorial board of Machine Learning Journal (MLJ), has published over 50 refereed papers in major machine learning, AI, and control journals and conferences, and has organized several tutorials and workshops at NIPS, ICML, and AAAI. His research is mainly focused on sequential decision-making under uncertainty, reinforcement learning, and online learning.

Jan 27
Bren Hall 6011
11:00am
Ruslan Salakhutdinov
Associate Professor
Machine Learning Department
Carnegie Mellon University

In this talk, I will first introduce a broad class of unsupervised deep learning models and show that they can learn useful hierarchical representations from large volumes of high-dimensional data with applications in information retrieval, object recognition, and speech perception. I will next introduce deep models that are capable of extracting a unified representation that fuses together multiple data modalities and present the Reverse Annealed Importance Sampling Estimator (RAISE) for evaluating these deep generative models. Finally, I will discuss models that can generate natural language descriptions (captions) of images and generate images from captions using attention, as well as introduce multiplicative and fine-grained gating mechanisms with application to reading comprehension.

Bio: Ruslan Salakhutdinov received his PhD in computer science from the University of Toronto in 2009. After spending two post-doctoral years at the Massachusetts Institute of Technology Artificial Intelligence Lab, he joined the University of Toronto as an Assistant Professor in the Departments of Statistics and Computer Science. In 2016 he joined the Machine Learning Department at Carnegie Mellon University as an Associate Professor. Ruslan’s primary interests lie in deep learning, machine learning, and large-scale optimization. He is an action editor of the Journal of Machine Learning Research and served on the senior programme committee of several learning conferences including NIPS and ICML. He is an Alfred P. Sloan Research Fellow, Microsoft Research Faculty Fellow, Canada Research Chair in Statistical Machine Learning, a recipient of the Early Researcher Award, Google Faculty Award, Nvidia’s Pioneers of AI award, and is a Senior Fellow of the Canadian Institute for Advanced Research.

Jan 30
Bren Hall 4011
1 pm
Pierre Baldi & Peter Sadowski
Chancellor’s Professor
Department of Computer Science
University of California, Irvine

Learning in the Machine is a style of machine learning that takes into account the physical constraints of learning machines, from brains to neuromorphic chips. Taking into account these constraints leads to new insights into the foundations of learning systems, and occasionally leads also to improvements for machine learning performed on digital computers. Learning in the Machine is particularly useful when applied to message passing algorithms such as backpropagation and belief propagation, and leads to the concepts of local learning and learning channel. These concepts in turn will be applied to random backpropagation and several new variants. In addition to simulations corroborating the remarkable robustness of these algorithms, we will present new mathematical results establishing interesting connections between machine learning and Hilbert 16th problem.
Feb 6
Bren Hall 4011
1 pm
Miles Stoudenmire
Research Scientist
Department of Physics
University of California, Irvine

Tensor networks are a technique for factorizing tensors with hundreds or thousands of indices into a contracted network of low-order tensors. Originally developed at UCI in the 1990’s, tensor networks have revolutionized major areas of physics are starting to be used in applied math and machine learning. I will show that tensor networks fit naturally into a certain class of non-linear kernel learning models, such that advanced optimization techniques from physics can be applied straightforwardly (arxiv:1605.05775). I will discuss many advantages and future directions of tensor network models, for example adaptive pruning of weights and linear scaling with training set size (compared to at least quadratic scaling when using the kernel trick).
Feb 13
Bren Hall 4011
1 pm
Qi Lou
PhD Candidate
Department of Computer Science
University of California, Irvine

Bounding the partition function is a key inference task in many graphical models. In this paper, we develop an anytime anyspace search algorithm taking advantage of AND/OR tree structure and optimized variational heuristics to tighten deterministic bounds on the partition function. We study how our priority-driven best-first search scheme can improve on state-of-the-art variational bounds in an anytime way within limited memory resources, as well as the effect of the AND/OR framework to exploit conditional independence structure within the search process within the context of summation. We compare our resulting bounds to a number of existing methods, and show that our approach offers a number of advantages on real-world problem instances taken from recent UAI competitions.
Feb 20
No Seminar (Presidents Day)

Feb 27
Bren Hall 4011
1 pm
Eric Nalisnick
PhD Candidate
Department of Computer Science
University of California, Irvine

Deep generative models (such as the Variational Autoencoder) efficiently couple the expressiveness of deep neural networks with the robustness to uncertainty of probabilistic latent variables. This talk will first give an overview of deep generative models, their applications, and approximate inference strategies for them. Then I’ll discuss our work on placing Bayesian Nonparametric priors on their latent space, which allows the hidden representations to grow as the data necessitates.
Mar 6
Bren Hall 4011
1 pm
Omer Levy
Postdoctoral Researcher
Department of Computer Science & Engineering
University of Washington

Neural word embeddings, such as word2vec (Mikolov et al., 2013), have become increasingly popular in both academic and industrial NLP. These methods attempt to capture the semantic meanings of words by processing huge unlabeled corpora with methods inspired by neural networks and the recent onset of Deep Learning. The result is a vectorial representation of every word in a low-dimensional continuous space. These word vectors exhibit interesting arithmetic properties (e.g. king – man + woman = queen) (Mikolov et al., 2013), and seemingly outperform traditional vector-space models of meaning inspired by Harris’s Distributional Hypothesis (Baroni et al., 2014). Our work attempts to demystify word embeddings, and understand what makes them so much better than traditional methods at capturing semantic properties.

Our main result shows that state-of-the-art word embeddings are actually “more of the same”. In particular, we show that skip-grams with negative sampling, the latest algorithm in word2vec, is implicitly factorizing a word-context PMI matrix, which has been thoroughly used and studied in the NLP community for the past 20 years. We also identify that the root of word2vec’s perceived superiority can be attributed to a collection of hyperparameter settings. While these hyperparameters were thought to be unique to neural-network inspired embedding methods, we show that they can, in fact, be ported to traditional distributional methods, significantly improving their performance. Among our qualitative results is a method for interpreting these seemingly-opaque word-vectors, and the answer to why king – man + woman = queen.

Bio: Omer Levy is a post-doc in the Department of Computer Science & Engineering at the University of Washington, working with Prof. Luke Zettlemoyer. Previously, he completed his BSc and MSc at Technion – Israel Institute of Technology with the guidance of Prof. Shaul Markovitch, and got his PhD at Bar-Ilan University with the supervision of Prof. Ido Dagan and Dr. Yoav Goldberg. Omer is interested in realizing high-level semantic applications such as question answering and summarization to help people cope with information overload. At the heart of these applications are challenges in textual entailment, semantic similarity, and reading comprehension, which form the core of my current research. He is also interested in the current advances in deep learning and how they can facilitate semantic applications.

PhD Research Fellowships

Standard

The Computer Science department at UC Irvine is seeking applicants for PhD research fellowships in artificial intelligence, machine learning, and their related applications, including topics such as deep learning, statistical learning, graphical models, information extraction, computer vision, high-dimensional data analysis, and more.

Please see this flier for more information.